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bstract

The complexity of the mechanisms underlying organic matter mineralization and nutrient removal in algal–bacterial photobioreactors during
he treatment of residual wastewaters has severely hindered the development of mechanistic models able to accurately describe these processes.
rtificial neural networks (ANNs) are capable of inferring the complex relationships existing between input and output process variables without
detailed description of the mechanisms governing the process, and should therefore be more suitable for the modeling of photosynthetically

xygenated systems. Thus, a neural network consisting of a single hidden layer with four neurons accurately predicted the steady-state operation
f a continuous stirred tank photobioreactor during salicylate biodegradation by an algal–bacterial consortium. Despite its simplicity and the low
umber of data sets for ANN training (23), this network topology exhibited a satisfactory fit for both training and testing data with correlation
oefficients of 99%. Although the use of ANNs for modeling conventional wastewater treatment systems is not novel, this work constitutes,

o the best of our knowledge, the first reported application of ANNs to photosynthetically oxygenated systems and one of the few models for

icroalgae-based treatment processes. This modeling approach is therefore expected to contribute to improve the understanding of the complex
elationships between light, temperature, hydraulic retention time, pollutant concentration and process removal efficiency, which would eventually
romote the development of algal–bacterial processes as a cost effective alternative for the treatment of industrial wastewaters.

2007 Elsevier B.V. All rights reserved.
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. Introduction

In a world simultaneously facing water crisis and global
arming, photosynthetically oxygenated biodegradation pro-

esses offer an attractive and reliable alternative to conventional
nergy-demanding and greenhouse gases-emitting wastewater
reatment processes [1]. In the presence of sunlight, microalgae
onsume the CO2 released during the bacterial degradation of
rganic pollutants, producing in turn the O2 required by the latter
rocess [2]. This oxygenation mode is cheaper (no energy need

or aeration) and has less environmental impacts (low release
f greenhouse gases and volatile organic contaminants) than
onventional treatments because sunlight drives the “in situ”
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hotosynthetic O2 supply [3–5]. Additionally, microalgae-based
rocesses permit to conduct secondary, tertiary and quaternary
reatment in a single step due to the ability of algae to remove
arge amounts of nutrients and heavy metals [6–9]. Recent stud-
es have also shown photosynthetic oxygenation could support
he aerobic treatment of toxic wastes containing pollutants such
s black oil, phenanthrene, phenol, or acetonitrile [5,10–12].

However, despite the merits of this technology, there are only
few full-scale systems in operation [13,14]. Thus, although
ore complex, traditional treatment systems often manage to

rovide a more consistent treatment efficiency than micro-algae
ased systems, precisely because the poor understanding of the
ngoing processes in algal–bacterial systems makes it difficult
or a plant operator to adjust system operation. In microalgae

ased systems, bacterial activity is for instance linked to oxygen
upply, which is itself a function of light penetration and microal-
ae concentration [15]. In addition, microalgae inhibition can
ccur at high light intensities (photoinhibition), high biomass

mailto:mutora@iq.uva.es
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oncentrations (mutual shading), and high pollutant concen-
rations if the process is not properly controlled [9]. Process
ontrol is therefore crucial to promote the development of photo-
ynthetically oxygenated processes. Unfortunately, no detailed
echanistic model for describing algal–bacterial process has

een developed so far.
Artificial neural networks (ANNs) represent a valuable

nstrument in the design and optimization of wastewater treat-
ent processes [16,17]. They are computing systems capable of
odeling complex relationships between inputs and outputs that

nfer a function from observations. A properly trained ANN thus
odifies a set of rules within its structure that relate input and out-
ut parameters without the need for mechanistic models [18].
his is particularly useful in applications where the complex-

ty of the mechanisms underlying process performance is high,
hich is the case of biological treatment processes for pollution

ontrol. Therefore, ANNs have gained an increasing considera-
ion in wastewater treatment modeling and control [17,19]. Çinar
t al., for instance, successfully modeled the performance of a
ubmerged membrane bioreactor treating cheese-whey wastew-
ter using ANNs by using a cascade-forward backpropagation
etwork consisting of a single 3-neurons hidden layer [17]. Like-
ise, effluent BOD and suspended solids (SS) concentration
ere accurately predicted in a major WWT plant in Cairo using

wo ANNs constructed with past operation data [16]. Besides
roviding a valuable tool for performance prediction, ANN can
e used in real-time control during WWT. For instance, Ruey-
ang et al. improved nitrogen removal in a sequential batch
eactor by using an ANN-based real-time control strategy which
ermitted to reduce the retention time of the aerobic and anoxic
ones by 45% and 15.5%, respectively, thereby reducing aera-
ion costs by 45% [20]. Similarly, Choi and Park and Aguado et
l. employed neural networks as software sensors for inferring
astewater quality parameters such as effluent COD or TKN

oncentrations [19,21]. This latter application is particularly use-
ul when the on-line measurement of process variables is costly
r technically difficult as a software sensor can accurately predict
hese key variables from other more easily monitored influent
r operation parameters.

This study evaluates the ability of ANNs to describe the
teady-state operation of a continuous algal–bacterial photo-
ioreactor using salicylate as model contaminant. The potential
f the trained ANN as a simulation tool is also investigated. In
ddition, the merits and limitations of this modeling approach
re thoroughly discussed.

. Materials and methods

.1. Modeling approach

ANNs are universal approximators for Boolean and con-
inuous functions that are capable of modeling the complex
elationships between input and output parameters without

equiring a detailed mechanistic description of the phenomena
overning the process [22,23]. In ANNs, each neuron receives
he information from the surrounding neurons multiplied by

specified weight (w), introduces a constant called bias (b),
w
u

Fig. 1. Basic structure of an artificial neuron.

pplies a transfer function (f ) to the outcome and sends the
esult to the surrounding neurons (Fig. 1). The intelligence of
NNs and their capability to solve hard problems derives from

he high degree of connectivity, which gives neurons a high com-
utational power [24]. Thus, based on past operation data, ANNs
re capable to model existing relationships between inputs and
utputs and provide solutions to unforeseen problems.

In this study a feed-forward network consisting of a single
idden neurons layer was selected. With such structure, the infor-
ation from the input neurons undergoes a transformation in

he hidden layer neurons before it is sent to the output neurons
Fig. 2). The number of neurons per layer should be high enough
o allow the network reproducing the behavior of the system.
owever, a too large neuron number can cause data overfitting, a

ituation that can be encountered when correlating experimental
ata. This is due to the fact that the large number of parame-
ers to be adjusted when using too many neurons might induce
he network to memorize the data used in the training while
oosing one of its more functional characteristics: generalization
25].

In the following, a general description of the ANN developed
s presented. This network consists of m inputs, n outputs, a
ingle hidden layer of p neurons, and D experimental data sets
or network training. X represents the matrix of input variables
dimensions: m × D), Yd (n × D) and Ys the matrices of observed
utputs and model outputs, respectively, and S (p × D) the matrix
f outputs from the hidden layer. The bias of the hidden layer and
utput layer are herein represented by A (n × D) and B (p × D),
espectively. Finally, the weights matrix of the output layer (Z)
nd the weights matrix of the hidden layer are illustrated by Z
n × p) and W (p × m), respectively.

A sigmoid transfer function (f ) was used in the hidden layer
ecause such neural networks are universal approximators for
rbitrary Boolean and continuous functions [22,26]. In addi-
ion, sigmoid functions introduce non-linearity into the model,
hich significantly increases the computational power of these
odeling networks.

(θ) = 1

1 + e−θ
− 1

2
(1)
Since the ANN outputs (removal efficiency, RE) in our system
ere within 0–100%, the same sigmoid transfer function (f ) was
sed in the output layer. Thus, the results from the output neuron
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Fig. 2. Basic architecture of th

btained using Eq. (1), were linearly transformed into RE:

sid = f

⎛
⎝ai +

p∑
j=1

zij · sjd

⎞
⎠ (2)

here sjd = f

(
bj +

m∑
k=1

wjk · xkd

)
(3)

nto matrix notation, Eqs. (2) and (3) can be expressed as:

s = f (A + Z · S) (4)

here S = f (B + W · X) (5)

The optimum values for connecting weights, bias, and num-
er of neurons in the hidden layer were obtained through network
raining. In this study, a supervised hybrid algorithm combining
ackpropagation and random methods for searching the mini-
um of the error function was used as training methodology

27]. The mean squared error (MSE) between the experimental
nd model outputs was selected as error function:

SE = 1

n · D

n∑
i=1

D∑
d=1

(Ydid − Ysid)2 (6)

To model pollutant biodegradation in an algal–bacterial
hotobioreactor, light intensity, temperature, hydraulic reten-
ion time (HRT), and pollutant concentration were selected
s the four input variables for being the most impor-
ant parameters influencing the output variables. Pollutant
emoval efficiency was selected as the unique output param-
ter [15]. Pollutant RE in algal–bacterial photobioreactors
s often limited by the oxygenation capacity of microalgae,
hich itself is a function of the temperature, light supply,

iomass concentration (X), and inlet pollutant concentration
S) (oxygenation = f(T, light, X, S)) [15,28]. In most of the
tudies reported in literature process performance was lim-
ted by oxygen supply caused by either insufficient light

p
t
t
A

cial neural network proposed.

upply, or too high biomass or too high pollutant concentra-
ion [5,15,29]. Thus, increasing light intensity or temperature
nhanced microalgae activity and with it photosynthetic oxy-
enation, which improves bacterial salicylate biodegradation
higher RE). Decreasing the HRT however caused an increase
n pollutant inlet load and a decrease in process RE, which
ranslated into inhibitory salicylate concentrations in the pho-
obioreactor. Finally, a moderate increase in salicylate inlet
oncentration increased algal–bacterial concentration when
he oxygenation capacity of the reactor was not fully used
hereas large increases in pollutant load, at values exceed-

ng the system’s oxygenation capacity, caused a decline in RE
s a result of the salicylate inhibitory effect on microalgae
29].

Input variables were normalized by setting the mean to 0
nd the standard deviation to 1 before feeding the network.
mong the 26 steady-state experimental data sets available

o build the ANN, 23 were used for network training and 3
or validation. Due to the low number of experimental data
vailable, the number of point for validations was low. All sim-
lations were carried out using MATLABTM (The Mathworks
nc., USA).

.2. Experimental

Data for network training and validation was taken from
uñoz et al. [15]. The algal–bacterial process was set up in
magnetically stirred, 600-ml conical glass vessel. The pho-

obioreactor was inoculated with a mixed culture formed by
he bacteria Ralstonia basilensis (GenBank accession number
Y047217) and the microalgae Chlorella sorokiniana 211/8k

CAAP Collection, UK). Light was provided by three fluores-
ent lamps (Gelia E27, 15 W) in a triangular configuration. The

hotobioreactor was operated at illuminances ranging from 2000
o 15000 lux, salicylate inlet concentrations from 0.75 to 2 g l−1,
emperatures from 25 to 31 ◦C, and HRT from 0.5 to 4.5 days.
fter each change in one of the process parameters the reac-
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or was allowed to equilibrate (i.e. reach a steady-state), and
nce the salicylate outlet concentration was stable (for a period
f 1 HRT) the reactor was monitored for a period of at least
HRT. During that period of time, 3–7 samples (depending on

he duration of the HRT) were withdrawn, and each sample was
onsidered as a replicate for this specific steady-state. Salicylate
nlet and outlet concentrations were monitored to assess process
erformance (evaluated as salicylate RE) and the mean values
f RE within each steady-state used for both model training and
alidation. Apart from the steady-state presented in Muñoz et
l. [15], two extra data sets corresponding to process operation
n the absence of light supply (no photosynthetic oxygenation
eading to bioreactor washout) were included within the training
nd data sets [15]. The influence of the tested parameters (light,
emperature, HRT, and salicylate inlet concentration) on process
erformance (RE) was analyzed using a one-way ANOVA with
ignificance at P ≤ 0.05. For a more detailed description of the
tatistical treatment refer to [15].

. Results and discussion

Wastewater treatment (WWT) in activated sludge processes
s usually described by mechanistic models such as the ASM2D
r ASM3 models [30]. Unfortunately, the application of these
odels is often limited by the availability of certain microbio-

ogical model parameters or by the mathematical complexity to
escribe certain inhibitory mechanisms when dealing with toxic
ffluents [30–32]. Likewise, the complexity of the mechanisms
nderlying BOD and N removal in algal–bacterial processes
as seriously limited the development of mathematical models
apable to accurately describe and predict these systems.

In this study a network topology using four input neurons
light, HRT, temperature, and pollutant concentration), one out-
ut neuron (RE), and one hidden layer of neurons was used to
escribe the steady-state salicylate removal in an algal–bacterial
hemostat. It must be stressed that a single layer of hidden
igmoid neurons constitutes the simplest structure capable to
imulate any function with a finite number of discontinuities.
uring network training, the MSE rapidly decreased when

ncreasing the number of neurons in the hidden layer up to four
eurons (Fig. 3a). Further increases did not cause a significant
ecrease in MSE values. The number of neurons composing the
idden layer of the ANN was thus selected as the maximum
umber of neurons providing a significant decrease in the MSE
etween the experimental and model predicted RE in the training
ata sets. Similarly, during process validation, the MSE reached
minimum when the ANN was trained with four neurons in

he hidden layer (Fig. 3b) and increased when increasing the
umber of neurons, which was likely due to data overfitting.
herefore, four neurons provided the best fit of the experimen-

al data while minimizing at the same time data overfitting. The
act that four neurons decreased the MSE between experimental
nd predicted RE in the validation data only confirmed the good

ata fit obtained during ANN training, and was not selected as
he main criterion to establish the optimum number of neurons.

The model herein developed provided a satisfactory correla-
ion of the training data sets with a correlation factor between

a
n
b
o

ig. 3. Influence of the number of neurons in the hidden layer on the mean
quare error during network training (a) and testing (b).

bserved and model outputs higher than 99% and a MSE of
.11% (Fig. 3a and 4a). Model testing with the three steady-
tates, evenly distributed in the range of experimental RE and not
sed during training, exhibited a satisfactory correlation factor of
9% and a MSE of 1.35% (Fig. 3b and 4b). In addition, paired
-test analyses showed no significant differences (at P ≤ 0.05)
etween experimental and model generated RE for all data set
sed in model training and validation. The correlation achieved
n the present study was however remarkable, taking into account
he relatively low number of steady-states used for training and
esting. The availability of a high number of experimental points
or ANN training would have certainly improved the predictive
apability of the network [16]. This demonstrates the high cor-
elating capacity of this type of black box models. Each steady
as maintained for at least 2 HRT, which limited the number of

teady-states attained during 1 year of experimentation to 26.
he work herein presented is intended to illustrate the merits
f ANNs for modeling and prediction of the performance of
icroalgae based processes, and constitutes, to the best of our

nowledge, the first attempt to model the treatment of industrial
astewaters using algal–bacterial systems.
Despite their merits, ANNs present several drawbacks such

s the great deal of computational efforts needed to adjust the

etwork parameters or the fact that the individual relationships
etween input and output variables are not based on engineering
r mechanistic judgments. In addition, ANNs are only capable to



A. Arranz et al. / Journal of Hazardous Materials 155 (2008) 51–57 55

F
t

p
a
c

h
t
l
r

H
i
o
t
b
T
b
t
f
d
m
i
o
o
h
s
t

F
t
1

i
s

s
i
u
s
c
o
a
b
[
t
e
intensities (Fig. 5). In addition, high HRT supported total pol-
lutant removal and consequently the influence of light intensity
under these particular conditions was negligible.
ig. 4. Model predicted vs. experimental removal efficiencies during network
raining (a) and testing (b).

redict process performance within the range of environmental
nd operational conditions used during network training, which
an seriously limit their applicability.

In order to illustrate the capacity of the ANN constructed
erein to provide reasonable predictions of process performance,
he influence of light intensity, HRT, and temperature on salicy-
ate removal efficiency was evaluated and compared to empirical
esults previously reported in literature.

Steady-state simulations showed that operation under high
RT resulted in high RE (Figs. 5 and 6). The RE of the contam-

nant in the photobioreactor raised due to the inherent decrease
f the pollutant loading rate at higher HRT and due to the fact
hat the oxygenation capacity of the system increased supported
y the increasing biomass concentration with increasing HRT.
he negative impact of mutual shading, caused by the increasing
iomass concentration (due to the increasing substrate consump-
ion), was negligible compared to the RE enhancement derived
rom the longer HRT. Operation at high retention times (HRT > 3
ays in this photobioreactor configuration) is therefore recom-
ended to provide an oxygenation capacity higher than the

nfluent BOD load. This is in accordance to the experimental
bservations of Muñoz et al. who reported complete removal

f acetonitrile when a tubular photobioreactor was operated at
igh HRT (2.5 days) [5]. Simulation results confirmed thus the
uperior performance of enclosed photobioreactors compared
o conventional stabilisation ponds, where retention times rang-

F
t
1

ig. 5. ANN prediction of the influence of the HRT and light intensity on
he removal efficiency of an enclosed algal–bacterial photobioreactor treating
g salicylate l−1 at 30 ◦C.

ng from 10 to 30 days are required for complete WWT under
imilar BOD concentrations [3,9].

The influence of light input on process efficiency was only
ignificant at low light intensities (2000–5000 lux) (Fig. 5). This
s explained because algal activity increases with light intensity
p to a certain level where the photosynthetic apparatus becomes
aturated [33,34]. This relationship is, however, only valid at low
ellular densities where all the cells received the same amount
f energy. At high cell densities mutual shading is likely to occur
nd light intensity within the reactor becomes a function of the
iomass concentration, which itself is a function of the HRT
35]. Thus, the fact that RE, and therefore the concentration of
he algal–bacterial biomass, was influenced by the HRT might
xplain the different rates of increase of RE with increasing light
ig. 6. ANN prediction of the influence of the HRT and temperature on
he removal efficiency of an enclosed algal–bacterial photobioreactor treating
g salicylate l−1 under continuous lighting at 4000 lux.
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Process efficiency significantly increased at high tempera-
ures as RE approached 100% at 32 ◦C even at 0.5 days of HRT.
omplete pollutant removal was achieved at a HRT higher than 2
ays when the process was operated at 30 ◦C (Fig. 6). This result
s not surprising considering the fact that the process was limited
y microalgal activity (i.e. oxygen supply, [5]) and taking into
ccount that C. sorokiniana is a thermophilic microalgae capable
o support good photosynthetic productivity even at 46.5 ◦C [36].
his is also in agreement with the results of Muñoz et al. who
bserved an increase in phenanthrene removal rates when pro-
ess temperature increased from 25 to 29 ◦C [29]. Therefore, the
ood correlation coefficients for both training and validation data
ets, together with the results of the paired t-test and the realistic
escriptions of process performance illustrated in Figs. 5 and 6
rovide a satisfactory evidence of model robustness and predic-
ion potential. In addition, the fact that the ANN was capable to
uccessfully simulate the influence of HRT, T and light intensity
n process RE producing a smooth surface function confirmed
he absence of overfitting in the model herein proposed despite
he low number of experimental data set available for training.
ndeed, overfitting would have generated random peaks or val-
eys within the surface functions generated in Figs. 5 and 6.
owever, these phenomena were not observed in the model

imulations carried out.
Finally, the sensitivity of the predicted removal efficiency

RE) to the input parameters in the model was investigated. This
nalysis was performed using the ratio between the relative vari-
tion of the removal efficiency and the relative variation of the
arget parameter as response variable. Thus, the sensitivity ratio
SR) for a generic parameter P was defined as follows:

R = 100
�RE/RE

�P/P
(7)

In our particular case, the study was performed during oper-
tion at illuminances of 7500 lux, salicylate inlet concentrations
f 1 g l−1, HRT of 1.5 days, and temperatures of 29 ◦C. SR
f 56, −186, 122 and 127% were obtained when increasing
ighting, salicylate inlet concentration, HRT and T by 20%,
espectively. These results predict a decreasing process perfor-
ance at increasing salicylate concentrations and point out the
RT and temperature as the main operation parameters enhanc-

ng process efficiency.

. Conclusions

Despite its simplicity, the ANN herein proposed was capable
o accurately describe the steady-state operation of a photo-
ynthetically oxygenated biodegradation process. The network
rovided a satisfactory fit of both training and testing data,
eing to the best of our knowledge, the first reported applica-
ion of ANNs to microalgae-based processes, and one of the
ew modeling approaches available in literature in the field of
pplied phycology. This good performance should be however

alidated with a greater amount of data, since in this particular
ase, the long time required to achieve each steady-state limited
he number of experimental data available for network training
nd validation. The use of ANNs represents thus a robust mod-

[

s Materials 155 (2008) 51–57

ling approach which is expected to contribute to improve the
nderstanding and control of the complex relationships between
nvironmental and operational variables, and treatment perfor-
ance in photosynthetically oxygenated processes.
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27] J.M. Zamarreño, P.A. González, A hybrid method for training a feedback
neural network, in: First International ICSC-NAISO Congress on Neuro
Fuzzy Technologies NF Havana, Cuba, 2002.

28] A. Richmond, Principles for attaining maximal microalgal productivity in
photobioreactors: an overview, Hydrobiologia 512 (2004) 33–37.
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